The Role of Glycerol in the Osmotic Regulation of the Halophilic Alga Dunaliella parva.

نویسندگان

  • A Ben-Amotz
  • M Avron
چکیده

Dunaliella parva, a green halophilic alga, was found to accumulate very large amounts of intracellular glycerol. Through measurements of the intracellular volume the internal concentration of glycerol was calculated and found to be around 2.1 m in cells cultured in 1.5 m NaCl. When the extracellular salt concentration of an algal suspension was increased or decreased, the intracellular glycerol varied accordingly, reaching its new osmotic equilibrium after about 90 minutes. Since no leakage of intracellular glycerol was observed above 0.6 m NaCl, these alterations in glycerol content are interpreted as due to metabolic formation and degradation of intracellular glycerol. The above results indicate the existence of a new type of algal osmoregulation, in which the osmotic balance depends on the synthesis or degradation of intracellular glycerol in response to the external salt concentration.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isolation, Characterization, and Partial Purification of a Reduced Nicotinamide Adenine Dinucleotide Phosphate-dependent Dihydroxyacetone Reductase from the Halophilic Alga Dunaliella parva.

An NADP(+)-dependent dihydroxyacetone reductase, which catalyzes specifically the reduction of dihydroxyacetone to glycerol, has been isolated from the halophilic alga Dunaliella parva. The enzyme has been purified about 220-fold. It has a molecular weight of about 65,000 and is highly specific for NADPH. The pH optima for dihydroxyacetone reduction and for glycerol oxidation are 7.5 and 9.2, r...

متن کامل

The Intracellular Distribution of Enzymes of the Glycerol Cycle in the Unicellular Alga Dunaliella parva

Glycerol is the main osmoticum of the unicellular green alga Dunaliella [1-4]. During the process of osmoregulation this solute has to be synthesized or degraded efficiently depending on the extent and direction of changes in the salinity of the external medium. Synthesis of glycerol starts from DHAP [5]. A glycerol-3-phosphate dehydrogenase (EC 1.1.1.8) reduces DHAP to glycerol-3-phosphate and...

متن کامل

The role of intracellular orthophosphate in triggering osmoregulation in the alga Dunaliella salina.

A new hypothesis is presented for the mechanism of metabolic response during osmoregulation in the alga Dunaliella salina. We propose that the osmotic response is initiated by differential volume changes of the cytoplasm and the chloroplast (observed using the electron microscope) which alter the cytoplasmic orthophosphate concentration. This triggers a flow through the Pi/triose-phosphate shut...

متن کامل

Changes in Dunaliella

Changes in phosphometabolites, following osmotic shock, were analyzed by two-dimensional thin layer chromatography, in extracts of the halotolerant alga DunalielIa salina in order to clarify the regulation of glycerol synthesis from starch. The experiments were carried out in wild-type and in osmotically defective mutant cells. It is demonstrated that hyperosmotic shock induces a decrease in fr...

متن کامل

Specificity for Nicotinamide Adenine Dinucleotide and Nicotinamide Adenine Dinucleotide Phosphate of Nitrate Reductase from the Salt-tolerant Alga Dunaliella parva.

Nitrate reductase of the salt-tolerant alga Dunaliella parva could utilize NADPH as well as NADH as an electron donor. The two pyridine nucleotide-dependent activities could not be separated by either ion exchange chromatography on DEAE-cellulose or gel filtration on Sepharose 4B. The NADPH-dependent activity was not inhibited by phosphatase inhibitors. NADPH was not hydrolyzed to NADH and inor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant physiology

دوره 51 5  شماره 

صفحات  -

تاریخ انتشار 1973